skip to main content


Search for: All records

Creators/Authors contains: "Zha, Daochen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning models are becoming pervasive in high-stakes applications. Despite their clear benefits in terms of performance, the models could show discrimination against minority groups and result in fairness issues in a decision-making process, leading to severe negative impacts on the individuals and the society. In recent years, various techniques have been developed to mitigate the unfairness for machine learning models. Among them, in-processing methods have drawn increasing attention from the community, where fairness is directly taken into consideration during model design to induce intrinsically fair models and fundamentally mitigate fairness issues in outputs and representations. In this survey, we review the current progress of in-processing fairness mitigation techniques. Based on where the fairness is achieved in the model, we categorize them into explicit and implicit methods, where the former directly incorporates fairness metrics in training objectives, and the latter focuses on refining latent representation learning. Finally, we conclude the survey with a discussion of the research challenges in this community to motivate future exploration. 
    more » « less
  2. Policy distillation, which transfers a teacher policy to a student policy has achieved great success in challenging tasks of deep reinforcement learning. This teacher-student framework requires a well-trained teacher model which is computationally expensive. Moreover, the performance of the student model could be limited by the teacher model if the teacher model is not optimal. In the light of collaborative learning, we study the feasibility of involving joint intellectual efforts from diverse perspectives of student models. In this work, we introduce dual policy distillation (DPD), a student-student framework in which two learners operate on the same environment to explore different perspectives of the environment and extract knowledge from each other to enhance their learning. The key challenge in developing this dual learning framework is to identify the beneficial knowledge from the peer learner for contemporary learning-based reinforcement learning algorithms, since it is unclear whether the knowledge distilled from an imperfect and noisy peer learner would be helpful. To address the challenge, we theoretically justify that distilling knowledge from a peer learner will lead to policy improvement and propose a disadvantageous distillation strategy based on the theoretical results. The conducted experiments on several continuous control tasks show that the proposed framework achieves superior performance with a learning-based agent and function approximation without the use of expensive teacher models.

     
    more » « less